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INTRODUCTION

The design of blunt free-fall shapes requires a source of

aerodynamic performance characteristics for use in predicting the

free-fall trajectory. The blunt shape may be described as a body

symmetrical in both planes with a characteristic blunt-nose shape

and a low-aspect ratio tail configuration. In calculating the

aerodynamic characteristics of the shape, the order of procedure is

to find: (1) drag, (2) static stability and (3) dynamic stability,

magnus, and roll damping. The drag is dependent primarily on the

nose shape and usually may be quickly fixed because of fuzing

requirements.

The procedure used by handbooks such as the "USAF Stability

and Control Handbook" sometimes referred to as DATCOM (Ref. (1))

and the AMCP 706-280 "Design of Aerodynamically Stabilized Free

Rockets" (Ref. (2)) is to calculate the drag and lift of the com-

ponent parts of a body and then add them up, with appropriate

influence factors, to arrive at total aerodynamic coefficients. The

two handbooks mentioned are comprehensive and are good guides to this

procedure. For use in blunt body design, some of the charts in the

handbook are not applicable since both handbooks start with the

premise that every aerodynamic shape is first of all a slender

streamlined body.

The purpose of this report was originally to collect available

blunt-body aerodynamic data from test reports on shapes already

* 1
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designed. This collection of data was to form the foundation for a

handbook for blunt-body design.

After collecting the available data, the author attempted to

use the AMCP handbook to calculate the normal force and center of

pressure for various blunt shapes and compare the calculated values

with the experimental values taken from the collected reference data.

This started the basis for putting together a modified version of

the Static Stability section of the AMCP handbook.

ESTIMATING STATIC-STABILITY COEFFICIENTS OF NONROLLING BLUNT SHAPES

A body in flight experiences two primary static forces: lift

and drag. The total of the pressures distributed over the body sur-

face are resolved into these two static force components. Lift and

drag are aircraft forces related to the ground as a reference plane.

In the free-fall shape, the pressures over the body are referred to

the body axis system which coincides with the ballistic path during

fall. The forces are given in dimensionless coefficient form to

ease scaling of the forces to body size and operating altitude.

Instead of lift and drag, we have normal force (Fz) and axial force

(Fx ) which in coefficient form are CN Fz/qSref and CA = Fx/qSref.

For a body in flight to be statically stable, the center of pressure

of the normal force (xcp) must be behind the body center of gravity.

Generally on bodies, it is necessary to add a tail configuration to

move the center of pressure back of the center of gravity.

The procedure in finding the normal force coefficient and the

center of pressure of a blunt shape is to start by estimating the

normal force and center of pressure for the nose-body combination

alone and then select a tail configuration and calculate normal force

2
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FIG. I STATIC STABILITY AXIS SYSTEM FOR BLUNT FREE FALL BODIES

3



NOLTR 73-225

and center of pressure for the tail. The two component forces are

added together and the overturning moments they cause, acting about

the center of gravity, determine the location of the resultant center

of pressure. The resultant normal force acting at the resultant

center of pressure causes a resultant moment about the center of

gravity which is referred to as the pitching moment (My). Generally

the aerodynamic coefficients are functions of the Mach number

(speed) and angle of attack to the wind (a). Figure 1 shows the sta-

tic force axis system with the normal force caused by the body being

at angle of attack, a.

Following are methods with accompanying figures for use in

estimating the normal force coefficients (CN) and the center of

pressure (xcp) for blunt-shaped bodies and typical stabilizing

configurations. The handbook first tells how to find CN and Xcp

near a = 00. Up to a = 4 to 8 degrees, the values are linear with

angle of attack. The nonlinearity begins when the body crossflow

drag force comes into play. So to construct a curve of CN and

Cm or (Xcp) versus a up to high angles of attack, the curves must

be built up in sections. Another point that will be noted is that

there are separate curves and charts for subsonic and supersonic

speeds. The handbook starts with the nose-body at subsonic speeds,

goes through supersonic speeds and then does the same with the

stabilizing tails. On the figures and illustrations, nose and body

lengths are given as IN and kB with the total length as L. When

shown this way, it is understood that all lengths have been divided

by the body diameter, d, such that the dimensions are said to be in

calibers.

4
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CNa NORMAL FORCE SLOPE COEFFICIENT OF BLUNT-NOSE CYLINDER AT SUBSONIC

SPEEDS

The slender-body theory provides a basis for obtaining CN, at

subsonic speeds at low angles of attack where viscous crossflow

forces are small. The theory states that:

dCN (K2 - K1 ) (ds( ) ~ sin 2a (Ref. (2)) (1)
dx Sref \dx

which when integrated from x = 0 to x £ gives

SB
CN 2(K2 - KI ) (2)Sref

a=0

(K2 - 1 is the apparent mass factor defined by Munk in

Reference (3). The theory does not apply very well at low-fineness

ratios (9/d < 4.0) because the nose bluntness begins to overpower

the body effects. I
For fineness ratios less than 1.0, normal force is very

sensitive to nose radius for flat-face noses. As the nose shape

approaches a hemisphere, the sensitivity to nose shape disappears.

CNa for blunt-nosed bodies may be obtained from Figure 2 which

includes experimental data from References (4), (5), and (6) and a

plot of CM using the slender-body theory, as presented in

Reference (2).

For blunt-face cylinders where k/d < 2.0, CN can be negative

at angles of attack from 2 to 20 degrees.

The cause is explained in Reference (7) as a separation bubble

along the top surface of the cylinder starting at the corner of the



NOLTR 73-225 i

4.0 M=0.8 '
M=0.9

M=0.8

3.0 M=0.6

M=0.9, 1.0
M=0.8

M=0.6

CNa&= 0  2.0 =0.

PER RADIAN M06

b2(K 2-K1 ) SLENDER BODY THEORY

NOSE SHAPE

a 0OFLAT
1.0 b r/d0o.1OTOO.25

CHEMISPHERE
SSECANT OGIVE r /d=1 .25

SECANT OGIVE r /d=4.25

FIG. 2 CN NORMAL FORCE SLOPE COEFFICIENT NEAR D= DEGREES ANGLE OF ATTACK FOR
BLUNT CYLINDRICAL BODIES, M=0.6 TO 0.9 (REF 4,5, AND 6)
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flat face and body juncture which gives a negative normal Force.

As the cylinder becomes longer, the flow reattaches and past the

point of reattachment the flow is normal and gives a positive normal

force. Figure 3 shows the effect of nose shape on CN versus ,- for

z/d = 0.5 cylindrical body. Figure 4 shows Cq versus a for flat-

faced cylindrical bodies of L/d = 1.0, 1.5, and 2.0.

EFFECT OF VISCOUS FORCES ON NORMAL FORCE

At low angles of attack, generally only the nose shape affects

the normal force on a cylindrical body. For blunt bodies where

rc/d < 0.5, the length of the body also affects normal force. As

the angle of attack increases, the body is exposed to the wind; and

a crossflow drag component is added to the normal force.
C Ap sin 2a (a)

ACNm = lCDc Sref

This normal force component is the Allen-Perkins Viscous

Crossflow component (Ref. (8)). Values of CDc and n may be found

on Figures 5 and 6.

In testing Equation (3) with the existing blunt-body data, two

things were found: (l) that the onset of viscous crossflow was

affected by the body length and (2) that the crossflow component so

predicted was too high. Figure 7 shows the angle of attack (a),

where the crossflow component becomes part of the normal force

plotted as a function of body length. Figure 8 shows a reduction

factor (e) which reduces the effective cylindrical planform area Ap

of the cylindrical body.

7
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The complete expression for normal force of a blunt body for a

between end of linearity and 150 is:

CN= CNa (a) + nCDce(Ap/Sref)sin2a (4)

Xcp CENTER OF PRESSURE OF BLUNT NOSE CYLINDERS AT a NEAR 0 DEGREE

FOR SUBSONIC SPEEDS

At low angles of attack, the center of pressure of the normal

force (Xcp) for a flat-faced cylinder has an apparent shift in

location from ahead of the flat face for Z/d < 1.0 to aft of the

flat face between L/d = 1.0 to 3.0. This shift in location is

caused by the separation bubble over the upper surface of the cylin-

der. Figure 9 shows Xcp for blunt-faced cylinders up to k/d = 11.0

for subsonic speeds.

Generally increasing nose bluntness increases the static

stability of a body. Figure 10 shows the effect of nose corner

radius (rc/d) on the location of Xcp for a 7-caliber cylindrical

body. Summarizing for Figures 9 and 10, static stability decreases

with increasing rc/d, increaeq with the addition of an oversized

ring, and is not much affected by concaving the flat face.

Figure 11 shows Xcp for blunt 5odies M = 1.0. Here again, stability

is improved by bluntness of the nose.

CN AND xqp FOR BLUNT AND SLENDER-NCSED CYLINDERS OF L/d 6 TO 15

FOR a = 0 TO 10 DEGREES, FOR M = 0.8 TO 1.2

A method, developed by H. Barth (Ref. (9)), gives

charts for calculating CN and x from a = 0 to 10 degreesN cp

angle of attack. The charts are good over a range of M = 0.8

to 1.2 and body length £/d 6 to 15. Nose bluntness varies

13
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(REF 6)
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from flat to a 2.5-caliber ogive and cone. By this method which is

based on experimental data:

a2CN = CNa (0a) + CNa 2(a ) 2(5)

Xcp (Xcp)a=0O + Dla (6)

Figures 12, 13, 14, and 15, a through g, are carpet plots of CN,

CNa2  Xcp , and D1 as a function of M and £B/d. The ordinates of

the plots do not give the desired values directly. As an example

for Figure 12a, the ordinate gives CN + 0.4 ZB/d = A so that

CNa = A - 0.4 kB/d.

CNa AND Xcp FOR BLUFF CYLINDERS 1/d = 1 TO 11, a NEAR 0 DEGREE.

a=0
AND a = 10 DEGREES FOR SUPERSONIC SPEEDS

Figures 16 and 17 give CN  and Xcp for short bluff cylinders
ca=O

over the Mach number range of 1.2 to 2.5. These figures are based

on the AEDC data (Ref. (6)). As a companion to these,Figures 18a

and b give the center of pressure of CN when a 100. This accounts

for the nonlinearity above a 4 to 8 degrees. Here CN is found

with Equation (4) and:
Cma = CNa = 10 p=0 (7)=i1 0o C io Xcpa=.10o

CNa AND Xcp FOR SLENDER CYLINDRICAL BODIES, a NEAR 0 DEGREE FOR

SUPERSONIC SPEEDS

Carpet plots from Reference (2) are reproduced on Figures 19

through 22. These plots based on experimental data are for ogives
and cone-nosed cylinders where £n/d 3 to 7 and M 1.4 to 7.0.
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NORMAL FORCE AND PITCHING MOMENT FOR CONE CYLINDERS WHERE
0 TO 90 DEGREES FOR SUBSONIC AND SUPERSONIC SPEEDS

K. D. Thomson formulated a rapid method for calculating CN and

Cm for cone cylinders for the angle-of-attack range of 0 to 60 degrees.

The method is good for bodies 1/d > 3 where cone half angle does not

exceed 750 and the crossflow Mach number (Mc) does not exceed 0.8

(Ref. (10)). By Thomson's method:

CN NAC1 + ACNv (8)

where: ACNI - C
r2 CNa sin 2a (inviscid contribution)

CN is found on the appropriate figure

in this report and ACNv is the viscous flow contribution. I
ACN S Xv j XN  L-E XL

:-cot a [B] 0 + [A]x + H[A] E (9)
KF sin a cos a S N L-E

For the pitching moment referred to the nose tip:

Cm = ACml + ACmv (10)

1
where: ACml = [ CNa xcp sin 2a (the inviscid contribution)

Xcp is taken from the appropriate figure

(ACm )2 X X -E X
v N L L

cot a [C] + [B] + H[B] (11)2 S 0 X LX-E
KF cosa N L
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theseto te ofXL-E
In these equations, to find the value of terms such as [A] ,
find the value of A at XL-E and at X and take the difference.

Figures 23 to 31 give A, B, C, E, F, H, J, and K. in both

Equations (9) and (11), S = 0.2 and is the Strouhal number. On

Figures 23, 24, and 25 for finding A, B, and C as a function of XN

XL and XL-E as defined on Figure 26 where:

XN kN S tan a

XL Z S tan a

E e S tan a (found directly on Figure 27).

The following table gives the limits of Equations (9) and (11)

and shows how to determine the values of K and F.

RANGE CHARACTER OF WAKE K F

00 to 400 Steady, Laminar Separation 1 Fig. 28

Turbulent Separation Fig. 31 1

300 to 600 Quasi-Steady Laminar 1 1

Turbulent Fig. 31 Fig. 28

For the range of a 600 to 900 the body is in the unsteady wake

regime and:

2 ___ACN sin a[CD (12)
NV D ref

where: CD KNCD , find CD on Figure 3S

c CX-2.4 x=24

and N on Figure 32.
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For the pitching moment:

ACmv sin 2a[CD Sref ] Xcp (xcp at high angles of

(13)

attack is the centroid of the body)

EFFECTS OF FLARES AND BOATTAILS AT HIGH ANGLES OF ATTACK

Thomson also describes how to calculate the normal force and

pitching moment of bodies having flares and boattails. The method

is not rapid as the one for cone cylinders aescribed in the previous

section but requires integrating the viscous crossflow drag over the

body so that:

ACv 
4)XL

- si~ S 0 CD T- dx (4
7r S 0ref)

XL

ACm - cos2 CD Dcd )Xdx (15)
0 S2 ref)

where: CD is obtained from Figure 33, S 0.2 and
c

XL = 9 S tan a, 9 = total length of body.

The body is treated as four sections:

(a) nose, where CDc for XN is multiplied by G from Figure 34

to account for the effect of pressure gradient on the nose.

(b) body, where CDc is taken directly from Figure 33.

(e) upstream influence of base, determine E from Figure 27 and

H from Figure 29. Find CD for E from Figure 33 and

multiply by H.

(f) flare or boattail. For a flare multiply CDc by G using

the flair angle as 0 on Figure 34.
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For the boattail, take CDc at x = 2.4 from Figure 32 as the

crossflow drag coefficient for the boattail. Figure 35 shows what the

developed crossflow drag coefficient would look like. Keep in mind

that such a curve of CD versus L has to be corrected to the local
c

body diameter when integrating for the total crossflow drag. Also

when finding the turbulent viscous forces, multiply by K from

Figure 31 except for the case of the boattail where only the region

ahead of the boattail is multiplied by K.

(ACNm)BT - NORMAL FORCE SLOPE COEFFICIENT CONTRIBUTION OF A BOATTAIL

NEAR a = 0.DEGREE FOR SUBSONIC AND SUPERSONIC SFEEDS

A boattail causes a negative normal force which subtracts from

the normal force of the cylindrical body nose.

S(aCN)BT = -KBT - (16)

K = 2 where dBT/dc > 0.8 (Ref. (2))

where: Sbt : cross-sectional area of boattail at

its smallest diameter

dBT = diameter of boattail at its smallest

diameter

d c diameter of boattail where it joins body

SB = reference area of nose-cylinder CNa

The center of pressure of the boattail is assumed to be located at
0.6 of the boattail length measured from the body boattail juncture.

The above expression was derived for boattail angles of 100 or less

and ratios of dBT/dc > 0.8.
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Where the boattail is replaced by a cylindrical boom of

diameter ratio to body of 0.3 or less at attachment point, the

CN of the boom may be ignored.

* For boattails where dBT/dc is less than 0.8, use Figure 36 to

find the factor KBT and the center of pressure of the boattail. At

supersonic speeds, Figures 37 and 38 give CNBT and Xcp/kBT for

boattails on infinite cylindrical bodies. This means that local

flow conditions upstream of the boattail are equal to free-stream

conditions. These charts which were taken from the AMC Handbook

(Ref. (2)) were derived from linearized theory calculations and

slender-body theory predictions.

(ACN) - NORMAL FORCE SLOPE CONTRIBUTION OF A CONICAL-FLARE

AFTERBODY a NEAR 0 DEGREE FOR SUBSONIC AND SUPERSONIC SPEEDS

The contribution of a conical-flare afterbody to the normal

force based on slender-body prediction is:

(ACN)f = 2 - (Ref. (2)) (17)

SB  (f]

and the center 
of pressure 

is:

-[(18)
rf()2]

(an overall value of 60% may be used)
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8I
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4
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KBT FACTOR USED IN EQUATION (16) FOR C NtBOATTAIL

a ~ ~ ~ - 0.6x- --

0.4

eZI

u 0- 0.x

040.8 d /dcI
LOCATION OF CENTER OF PRESSURE ON BOATTAIL

FIG. 36 K AND CENTER OF PRESSURE FOR BOATTAIL
BT

AT SUBSONIC SPEEDS
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FIG. 37. NORMAL FORCE COEFFICIENT GRADIENT
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The important geometric parameter is the ratio of forebody

cylinder diameter to base diameter. Flare angle and Mach number do

not influence the flare normal force within the limitations of

slender-body assumptions. The effect of upstream flow conditions

ahead of the flare are not accounted for. Since separation is likely

to occur at the body-flare junction, these predictions are not apt to

be realistic.

Figure 39 gives ACNaf over a Mach number range of 0 to 2.5

(Ref. ANC Handbook) and should be used in preference to Equation (8).

ESTIMATING NORMAL FORCE AND CENTER OF
PRESSURE OF FINS

The basic fin configuration is four fin panels attached to the

body in the horizontal and vertical planes. In estimating the normal

force contribution of the four panels, only the two panels in the

horizontal plane are considered. All of the methods outlined here

for estimating CNafe and Xcp are for isolated panels not attached to

a body. Body-fin and fin-body influence factors are used to correct

the isolated panel normal force to a panel force attached to a body.

SUBSONIC SPEEDS

a. CNafe AND Xcp, a NEAR 0 DEGREE

The normal force of the fins is first calculated as a flat

plate detached from the body and positioned in the horizontal plane.

The normal force coefficient slope based on lifting line theory is:

-_ _ _ _ __ _ (Ref. (2))

AR 2 + (AR)2(02 + tan --) + 4 (19)

59



L NOLTR 73-225

NOTE: AR= ASPECT RATIO = e2fe

1.6 - b = EXPOSED FIN SPAN

Sfe = EXPOSED FIN AREA

z. A c/2= FIN SWEEP ANGLE AT MID-CHORD5 1.2 - \ :In :o ==

<w FOR LOW ASPECT RATIO: M 0OTO 0.6

S0.8

UZ 0.4

0 I I I I I II
2 4 6 8 10 12 14 16

AR [6i2 +TAN2Ac/2] 1/2

FIG. 40 SUBSONIC FIN NORMAL FORCE COEFFICIENT GRADIENT (REF 2)

60



N OLTR 73-225

--

ALE
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FIG. 41 FIN PANEL GEOMETRY FOR USE WITH FIG. 40 (REF 2)
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Figure 40 is a plot of CN /AR and is good up to M = 0.6. The
a

center of pressure of the fin is assumed to be 25 percent of the

mean aerodynamic chord aft of the leading edge.

Figure 41 illustrates the fin panel and shows how to use

Figure 40. It should be noted that there is no significant effect

of fin roll o.,ientation on the normal force or xcp of fins as long

as there are an even number of fin panels,

b. FIN-BODY INTERFERENCE (SUBSONIC)

When fins are attached to a body of revolution the

interference between the fin and body causes an increase in the

effectiveness of the fins and brings about a lift over the body por-

tion enclosed between the fins. Figure 42 (Ref. (11)) is a plot of

the multiplying factors Kf(b), effect of fin on body, and Kb(f),

effect of body on fin. In the figure the span (b)

referred to in the ratio d/b is now the full-fin span as projected

through the body. Using CN(e) from Figure 40 for the fins alone,

we have:

cS C-- Kf(b) I Kb(f ]  (Ref. (11)) (20)Ca fw Ca (fe ) Sf w

where: Sfw =(fe) + (projected fin area passing

through body)

Sfe exposed fin area.
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FIG. 42 FIN-BODY INTERFERENCE FACTORS -SUBSONIC (REF 2)
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To use CNafw with the body normal force components the

coefficient must be referenced to the body area

CN Cf (Sfw) (21)

afB afuSB

c. FIN-FIN INTERFERENCE

The fin normal force calculations have been for a four-fin

configuration where two fins have been assumed to act in the hori-

zontal plane. For six-and eight-fin configurations, multiply the

four-fin values by 1,37 and 1.62,respectively (Ref. (2)).

TRANSONIC SPEEDS - CN AND Xcp a NEAR 0 DEGREE
- c~~~afe DcaERDGE

For rectangular fins of very low aspect ratio linearized

slender-wing theory predicts that CN, = (n/2)AR. Utilizing transonic-

similarity laws, McDevitt (Ref. AMC Handbook) obtained from experi-

mental data the correlation shown on Figures 43 and 44. Note that

here the wing thickness ratio t/c is an important factor.

For M = 0.6 to 1.4 to calculate CNafe for either rectangular

or swept fins, use the method from the U.S. Air Force Stability and

Control Handbook (Ref. (1)). This method calls for plotting a

curve of CN from M 0.6 to 1.4. For thin wings or low-aspect

ratio wings, the curve shows an increase in slope from M 0.6 to a

high value near the critical Mach number (MFB) and then through Ma

and Mb to the value at ,. 1.4. The charts cf Figures 45a to e are

used as follows:

(1) Find CN(f) for M 0.6 from Figure 40

(2) Calculate MFB from Figure 45a for zero wing sweep

(3) Fo. ,,ding with sweep obtain a corrected M(FB)A from

Figure 45b.
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TRANSONIC SPEEDS (REF 2)
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TRANSONIC SPEEDS (CONT'D)
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(4) Find CN  using Figure 40 for MFBa (fe)

(5) Find actual [CNa(fe)]FB/CNa(fe) from Figure 45c using

(tic) ratio

(6) The value of Ma MFB + 0.07 (22)

(7) [CNa (  ] = (1 - a/c)[CNa(fe)]FB where a/c is found on
afe)a af)F

Figure 45d (23)

(8) The value of Mb MFB + 0.14 (24)
(9) [CN 1f)](1 - b/c)[CN fe IF where b/c is found on

(9)5
Figure 45e(25)

(10) Find CN for M 1.4 use the methods in the section
Na(fe)

on C of Rectangular Fins at Supersonic SpeedsNa
SUPERSONIC SPEEDS

a.CNafe AND Xcp RECTANGULAR FINS, a NEAR 0 DEGREE

On rectanaii1ar fifns at supprsono speeds there is a loss

of lift on Lhe tips which according to Evvard's theory (Ref. (12)) is

half of the two-dimensional value. For a finite fin panel

C 1 when AR > (26)Na(fe) a 26AR w

When the span is short enough that the Mach cones from the tips

intersect, then the expression for normal force slope becomes,

2 [2A1 +A 2_+ A3] 1
C= I -2when AR < - (27)Na(fe) 6 AT

(See Fig. 46 note A4 drops out in the

solution)
where: BAR >0.5 use the chart on Figure 47
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FIG. 46 RECTANGULAR WING PLANFORMS (REF 12)
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FIG. 47. NORMAL FORCE COEFFICIENT GRADIENT AND
CENTER OF PRESSURE FOR RECTANGULAR FINS.(REF 2)
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The above expressions are based on linear theory and are good

up to a__ +0 ° .

b. CNafe AND Xcp SWEPT FINS, a NEAR 0 DEGREE'

The charts shown on Figures 48 and 49 (a, b, c) were taken

from the AMCP Handbook (Ref. (2)) and are part of a more complete

coverage of wing planforms made by E. Lapin. Note that X is the tip-

to-root-chord ratio.

c. FIN-THICKNESS EFFECTS

When Mach lines lie on or near the fin leading edge, there

is a loss in normal force from the theoretical value. Figure 50

(Ref. (2)) gives a correction factor for this loss. To use the

figure:

(1) find AyL equal to the diffzrence between upper surface

ordinates at the 6 and 15 percent chord stations (in percent
of chord).

(2) AyL = Ay/cos Ate

(3) for a double-wedge leading edge AyL = 5.85 tan 6L where

6± is the wedge semi-angle

d. FIN-BODY INTERFERENCE

Mach number and the fin plane geometry are important to

supersonic fin-body interference when considering the effect of the

fin normal force carryover to the body, Kb(f). Figure 51 (Ref. (2))

gives Kb(f) for the case where the cylindrical body extends past the

fin trailing edge and for the case where the body is flush with the

fin trailing edge.
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The exceptions where Figure 42 is used instead of Figure

51 to find K are:

b(f)

(1) If ARe  1 for triangular planforms

(2) If ARe (1 + A )(tan ALE/S + 1) 4 for nontriangulare e L

planforms

Kf(b) is found using Figure 42 as in the subsonic case.

Another method developed by Morikawa (Ref. (2)) gives a
total fin-body interference factor K = Kf(b) + Kb(f) for use on

cylindrical bodies where the trailing edge of the fin is unswept and

flush with the base. Figures 52a tc f give K = ACN /CN (fe)

where CN  is for the isolated fin panel and AC N refers to theN(fe)a

CN with interference. In other words, the K from Figures 52a
a (fe)

through f is used the same way as the quantity (Kf(b) + Kb(f)).

e. FIN-FIN INTERFERENCE

Supersonic fin impingement was studied by Potter, Shapiro

and Murphree for clipped delta fin configurations where d/b : 1/2

only. The correlation parameter (Ref. (2)):

c
I d sin r/n (28)

where:
cr exposed root chord

d body diameter

n = number of fins
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The parameter I is shown on Figure 53 as a function of CN
a(fe/2)

which is based on an effective area, Seff, which is a function of the

number of fins, n, such that:

No. of fins (n) S eff/Sfe/2

4 1.63

6 2.43

8 3.24

Sfe/2 is the exposed area of a single fin: as one of four fins or

one of six fins not as in previous calculations where it was two of

four fins.

8
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REFERENCE AREA -Sef (EFFECTIVE AREA)

=n1.63 (4 FINS) effm 2.43 (6 FINS) -be

S .2d b S1 ,-bCr .1/2 ln

Seff SfI LNOM AREA3.24 (8 FINS) S.2 LNO
S fe/2 OF SINGLE FINL

ICr
= 173 ~d sinnf

M- - 1.73 n

4.0- n - NUMBER OF FINS

d I

S3-0-at 
b 2

M.- 2.86at 0 (RECTANGULAR FINS)

010203.0, 4.0 5.0 6.0 1 0

FIG. 53 NORMAL FORCE COEFFICIENT GRADIENT OF MULTIPLE FINS AT SUPERSONIC

SPEEDS (REF 2)
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To use Figure S3 the steps are:

(1) compute I

(2) find CNafe/2 from Figure 53

(3) multiply CNafin by appropriate Seff/Sfe/2

The result gives CN, for the total number of fins based on the area

of one exposed fin panel. Also it is important to note that

CN(fe) /2 from Figure 53 does not have to be corrected for fin-body

and body-fin interference. To get CNf, the total fin lift based
afb

on body reference area:

(eNa(fe) __eff fe/J (29)

CN(fb) ( 29Sfe/2)

where: I < 1 compute C( the regular way for
Na(fe)

four fins and correct by:

C N6Fn C N 8 FinsC6Fins 1.50, CN - 2.00 (Ref. (2))

CNa4Fins CNa4Fins

These fin-fin interference corrections have been derived only for

the fins shown on Figure 53 but may be used when making predictions

for other fin shapes.

EFFECT OF BOATTAIL ON FINS AT SUBSONIC SPEEDS, a NEAR 0 DEGREE

For subcaliber fins (i.e., where the fin span is less than or

equal to the diameter of the boattail body juncture) the fin effec-

tiveness is reduced by a factor which depends on nose bluntness.

The fin normal force is calculated as attached to the boattail so
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that in finding Kf(b) and Kb(f) the ratio d/b uses the boattail
Sfe [Kf(b) + Kb ])

diameter (dBT). Then (CNf)BT = CNa(fe) S [-+ (f)]"
S

wS

Finally the effect of the boattail is CNf Kf(sc)(CNaf )BTS ref  (30)
C, fre f ref

where Kf(sc) is shown on Figure 54.

Whdre the fin is attached to a boattail and the span is not

subceliber, the percent of the fin area which is not subcaliber is

not affected by the boattail. The fin normal force CNxfe is computed

as explained above and is separated into the percent affected by the

boattail and the percent not affected.

CNfref [Kf(sc)(x) + 1.0 - x](CN (31)

where: x is the percent subcaliber.

For subcaliber ring tails, the boattail reduces the effectiveness

of the ring by a factor of 0.8

NONLINEAR NORMAL FORCE ON FINS AT HIGH ANGLES OF ATTACK

Up to 100 angle of attack the previous methods for getting CN

of tail fins holds. J. E. Fidler (Ref. (13)) presents an equation

based on empirical methodology where:

CN = CcI + C2a 2  (32)

He regards Equation (32) as a truncated power series in a. With

the following boundary conditions:

a 0a == T/2 a=n

CN = 0 CN = f(n/2) CN = 0

CN = ft(0) CN 0 CNafe = -f'(0)
cfe czfe
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The equation becomes:

CNfe f(0)(a) + a + - a3N f 2 T r 7 2 r 3

[16 f(k- 4ff (0)]4+ 3 (33)
TrT

f() may be found on Figure 55. f'(0) Or CNf may be found from

appropriate figures in this report. Equation (33) is good up to a

maximum angle of attack a' as determined by Figure 56. With the

maximum angle for use of Equation (33) determined, the further deter-

mination of CNfe up to a = 300 is as follows.

(1) calculate CNf e up to a' as (CNfe)a, with Equation (33)

(2) find ACN/ACNm from Figure 57

(3) find ACNm from Figure 58

then: CNfe  (CNfe)a, + (ACN/ACNm)CNm.

From a 500 to 900 a second equation was developed:

CNfe = f(30) + 1.738A - 1.652f'(30)

+ [4.82f'(30) - 6.6A] a

+ [7.54A - 4.15 + f'(30)] a2  (34)

+ [l.llf'(30) - 2.31A] a3

where: A = CN - f(30) (35)c ( 5

CNc from Figure 59

f(30) from Figure 60a, b, c

f'(30) from Figure 61
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For a complete curve of CNfe the missing section between a = 30*

and a = 500 must be filled in.

a. CENTER OF PRESSURE OF FINS AT HIGH ANGLES OF ATTACK

Fidler in Reference (13) also has a method for calculating

the spanwise and chordwise centers of pressure of fins. Only the

chordwise calculations are presented here.

Chordwise center of pressure of a fin as measured from the

fin root chord body juncture is:

__ - 1 + F(M N (36)

c \c =90 °  c

The procedure is as follows:

(a) find (c) a=900 as a function of X from Figure 62

(b) find !a as a function of a for the proper AR and X for~c

M = 0.98 from Figure 63
AXc

(c) find the variation of c from M 0.98 to M being
c

calculated from Figure 64 as F(M).

(d) find N from Figure 65.

Equation 36 in workable form is:

XCP ~ ~~~~~(xcPM09[1+F%]N (7
c ()cFa=90o - c =900 \ c 981[ -
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FIG. 58 AC - MAXIMUM INCREMENT OF NORMAL FORCE ABOVE c'NM
(SUBSONIC MACH NUMBER ONLY) (REF 13)
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FIG. 59 VARIATION OF FIN NORMAL FORCE WITH MACH NUMBER (c = 90 DEGREES) (REF 13)
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FIG. 60 aVARIATION OF NORMAL FORCE WITH MACH NUMBER (c=30 DEGREES) (REF 13)
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FIG. 60 cVARIATION OF NORMAL FORCE WITH MACH NUMBER
(=30 DEGREES) (CONT'D) (REF 13)
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FIG. 61 VARIATION OF NORMAL FORCE CURVE SLOPE WITH
MACH NUMBER (t=30 DEGREES) (REF 1.3)

98



NOLTR 73-225

CENTER OF PRESSURE COINCIDES WITH FIN CENTROID
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FIG. 62 CHORDWISE CENTER OF PRESSURE AT 90 DEGREES
VERSUS TAPER RATIO (REF 13)
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NORMAL FORCE OF RING TAILS SUBSONIC AND SUPERSONIC

Figures 66a to f give CN for ring tails attached to cylindrical

afterbodies over a Mach number range of 0.8 to 3.0. The data were

obtained experimentally from wind-tunnel tests on a particular

40 double wedge ring set at a 40 angle of attack to the body. The

center of pressure of the ring may be assumed to be at mid-chord

(Ref. (2)).

EFFECT OF NOSE BLUNTNESS AND BODY LENGTH ON FIN NORMAL FORCE AT
a = 0 DEGREE AND 12 TO 15 DEGREES FOR SUBSONIC AND SUPERSONIC
SPEEDS

At subsonic speeds, nose bluntness reduces the effectiveness of

fins where rc/rd > 0.25. Figure 67 shows this effect and applies

here for AR up to 1.8. Also note that body length has the opposite

effect. This urve was developed mainly from the AEDC experimental

data from Reference (6). To use the factor Kf(N), first find

CNafbby the theoretical method corrected for body interference

effects and referenced to the body area.

CNaf(N)b = CNafb Kf(N) (38)

At supersonic speeds, Figure 68 gives the factor Kf(N) also

derived from Reference (8). The body length has no effect with

the bluntness. Above an aspect ratio of 1.0, and M > 1.2 there is

no effect of nose bluntness.

In the range of a = 120 to 150 at subsonic speeds, the nose

shape has little effect on fin normal force; however, there is still

an effect of body length and fin-aspect ratio. Figure 67b shows

Kf(N) at a 120 to 150 for subsonic speeds. At supersonic speeds,
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FIG. 66 c INCREMENTAL NORMAL FORCE COEFFICIENT GRADIENT FOR A RING TAIL
MOUNTED ON A CYLINDRICAL AFTERBODY (REF 2)
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there is a definite effect of fin-aspect ratio on fin effectiveness

at higher angles of attack. Nose bluntness and 1/d do not have any

effect here. Figure 67b shows this effect for a = 120 to 150 over

the Mach number range of 1.1 to 1.5. J. E. Fidler (Ref. (13)) pointed

out to the author that for angles of attack greater than zero, the

usual fin effectiveness factors Kf(b) and Kb(f) derived by Pitts,

Nielsen, and Kaattari of Reference (11) would not suffice at higher

angles uf attack because there would be an effect of the vortex from

the body :'n the fins not accounted for. These factors of Kf(N) at

120 to 150 shown on Figures 67b and 68b are probably related to

this body vortex effect.

EFFECT OF ADDING FIN-TIP CAPS TO FINS AT SUBSONIC SPEEDS AND
SUPERSONIC SPEEDS

Fin-tip caps give added fin normal force without increasing the

span. Fin-tip cap normal force may be calculated ly treating the

tip caps as additional horizon al fins. Use Figure 40 to find

CNafe for the top and bottom tip caps on the vertical tail of a four-

finned configuration. The normal force slope (CNfe) calculated by

Figure 40 is affected by the nose bluntn-ss (r-c/rd), aspect ratio

(AR), and the ratio of the distance the tip cap is above the body

surface (y/d). The fin-tip plate factor (Kc) relating all of these

effects is plotted on Figure 69. For flat-face configurations (Kc)

is approximately half as large as for rounded-and sharp-nosed

configurations (rc/d Z 0.5).

To find the normal force contribution of a fin-tip cap:

(a) find CNawe for one fin-tip cap from Figure 40

(b) find Kc the fin-tip plate factor

I 111
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CN=(Sfe) Kc  (39)
(c) calculate c fe SB

(d) add CNcf(cap)B to CNafB

where: CNfB is found by Equations (20) and (21) for

the fins supporting the caps.

The center of pressure of the fin-tip cap may be taken as 0.25 of

the mean aerodynamic chord of the cap. Figure 69 was developed

from wind-tunnel test results of Reference (6).

The effect of adding fin-tip caps at supersonic speeds is the

same as at subsonic speeds. Figure 70 developed from data from

Reference (2) gives the effectiveness factor Kc for the fin caps.

The points on the figure show a spread. There does not seem to be

any effect of nose shape or body length or Mach number for the

configurations shown. It is advised that an average value for Kc

be used. The only variables are (y), the height of the cap from

the body measured in calibers; and (AR) the cap aspect ratio.

To use Figure 70, first find AR, then calculate Sc (using

dimensions ii calibers) and determine y.

Find Kc/y on the figure and calculate the theoretical fin-cap

normal force slope CNafe using Figure 43 through Figure 49.

Calculate CNfcaB using Equation (30).

CALCULATION OF CN AND Cm FOR

COMPLETE CONFIGURATION

The AMC Handbook (Ref. (2)) gives a good calculati.on procedure

in the form of a table with detailed instructions. The author

advises studying this handbook and the AF DATCOM Handbook (Ref. (1))

before proceeding with design calculations.
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What have been presented so far are reprints of calculation

charts from both handbooks with the addition of modifications to

cover the blunt shapes.

Figure 71 shows a sample blunt shape, and the two basic

equations for obtaining CN and Cm. Calculate CN and Xcp for each

component. Reference all component coefficients to the same

reference area - usually the body cross section area. Then add the

components as shown.

Up to about a = 40 to 60 CN for a body is linear with the

exception of i/d - 2.0. Above this crossflow drag must be introduced.

Table 1 reviews the component calculations of the report.

Table 2, page 122, lists and analyzes a bibliography of material

which has blunt-body information. In the original search for

material to include in this report these sources of material were

studied. In most cases the configurations are so specialized that

they were not adaptable for use in making the curves and charts of

the report.

Appendix A demonstrates a computation of CN and x cp of a

typical blunt configuration with a comparison to experimental

results. The configuration shown was tested in the NOL Supersonic

Tunnel No. 1.

L
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TABLE 2. ANALYSIS OF CONTENTS OF ITEMS IN BIBLIOGRAPHY

BIBLI- CONFIGURATION AERODYNAMIC INFORMATION
OGRAPHY

ITEM MACH NO. STATIC PITCH ROLL DATA OR
NO. RANGE I/d NOSE BODY TAIL STABILITY DRAG DAMPING DAMPING MAGNUS THEORY

1 0.40 TO 1.3 1.76 B C S X X X DATA

2 0.6 TO 1.5 3 TO 11 B,H,O C O,S,C X X DATA

3 0.8 TO 1.2 6 TO 15 B,C,H,O C 0 X DATA

4 0.75 TO 3.0 3 S C R X X DATA

5 SUBSONIC DISPERSION BOMBLETS DATA AND
THEORY

6 0.6 TO 1.3 4 TO 6 B C C X DATA

7 0.6 TO 1.3 6 B C C X DATA

8 0.2 TO 1.2 3 f0 BO C B,C,S X X X DATA

9 0.6 TO 1.3 5 B C C X X DATA

10 0.6 TO 1.4 3 B,0' C R,P X X DATA

11 0.6 TO 0.95 2,4 B,P R S,W X DATA

12 0.2 TO 4.0 1 TO 4 B,C B 0 X X DATA

13 0.8 TO 2.2 9 0 C S X THEORY

14 SUBSONIC 12 0 C S X THEORY

15 0.7 TO 1.2 3 B,C,BO C,B 0 X X DATA

16 0.25 TO 0.80 0.5 TO 2 B C 0 X X DATA

17 0.7 TO 1.01 2.3 B0 CB S X X DATA

18 0.6 TO 1.2 2 B C F,P X DATA

19 0.13 4 TO 8 8,B0 CB S,R X X DATA

20 1.2 TO 4.0 6,7 BS CB SE X X DATA

21 1.3 TO 4.5 5 BICONIC B SW X DATA

22 1.7 TO 3.7 5 BS CB S X DATA

23 3 9 C,CB CB SE j DATA

24 0.25 6 TO 8 B,H,O CB C X X DATA

25 0.25 5.5 0 CB C X X J DATA
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TABLE 2 (CONT-D.)

BIBLI- CONFIGURATION AERODYNAMIC INFORMATION
OGRAPHY1

ITEM MACH NO. STATIC PITCH ROLL jDATA OR
NO. RANGE /d NOSE BODY TAIL STABILITY DRAG DAMPING DAMPING jMAGNUS THEORY

26 Lc.74 TO1.8 1 TO3 B R S X X DATA

27 1SUBSONIC TO 
TER~SUPERSONIC 7 TO 12 0 C S XTH)R

28 0. 13 TO 2.86 2,5 B C 0 PRESSURE DATA

________________ __________________ DIST.

29 0.6 T01 8 5 0 CB S X X X DATA

30 0.2 TO 1.5 3 TO I B,O C SO,C,W X X DATA

31 0.9 TO1.2 9 BO C 0 X X X X DATA

32 0.7 TO2.5 5 Bo CH 0 X X X x X DATA

33 0.5 TO1. 1 8 B,5 CB S x X X DATA

34 o.5 TO1.2 4 B,k C,B 5 x X DATA

35 0.3 TOI. 2 4 H C,B S x X X DATA

36 1.7 TO3.8 4 TO7 B5 CB F X X DATA

37 Mc-O TO 0.7 --3 C,O IC O,B,F X THEORY

38 0.3 TO1.2 4 B C S X DATA

39 0.5 TO1.2 2.5 B C F X 7 ____ - DATA

40 0.7 TO3 3 BH,S C S X X DATA

KEY TO CONFIGURATION LETTER SYMBOLS

NOSE B - BLUNT BODY B - BOATTAIL TAIL B - BOX
C - CONE C - CYLINDRICAL C - RECTANGULAR WITH CAPS
0 - OGIVE H - HEMISPHERE BASE F N LAESP -PYRAMID Q0- NO BODY F -FLR

S - SPIKE R - RECTANGULAR 0 - NO TAIL
H EIPEE- WITH BANDS P - PLATE

- WITH BAND R-RN
- WITH SPOILERS S - RECTANGULAR

W - WRAP AROUND
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APPENDIX A

CALCULATION OF CN AND Cm AT M =0.85 OF TYPICAL
BODY-FIN CONFIGURATION WITH COMPARISON TO EXPERIMENT

A. Body-Alone (Figure la)

(1) a =50

CN CM (CL) + CNaBT)

CMa = 2.5/rad (Fig. 2)

CM -0.486/rad (Eq. (16))

CM = 2.5(5/57.3) - 0.486(5/57.3)
a50

CN 50 0.218 - O.fl42 = 0.176I

Moments about the nose:

CN Xcp = CNB XCPB + CI4BT xcp(BT) (Fig. 9)

0.176 xcp = +0.218(-1.25) -0.042(-6.60) (XPT 0)

Xcp =+0.0041/0.176 +0.023 (from nose)

(2) a = 100

CN CM(a +CN (a)2  (Eq. (5))
a a

CN =2.42(0.174) + 2.15(0.030) (Fig. 12b, 13b)
a=10 0

CNa.100 = 0.486

Effect of Boattail
CM 0.486 - (0.174)(0.486) =0.402

a=10 0

x =(Xcp) 0 + Dja (Fig. 14b, 15b)

Xcp =-1.44 -5.6(0.174) =02.41 (From nose)
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Moments about nose:

CN Xcp = CNB XCPB + CNBT Xcp(BT)

0.402 Xcp = -0.486(-2.41) + 0.084(-6.6)

Xcp = -0.6166/0.402 = -1.534 (From nose)

(3) a = 200, 300 400

CN 1/2 CNa sin 2a + ACNV + CNBT (Eq. (8))

ACNvS J XN XL-E XL-XBT

KF sin a cos a S 0 XN XL-E

XL
2 sin 2al C(d

S J CDc\re dx (Eq. (9), (14))

(Where a' = a - 150 and

XBT = kBTS tana')

a K F S J H E XN XL XL-E XL-XBT

200 0.56 0.88 0.2 0 0.91 0.125 0.036 0.505 0.380 0.442

300 0.54 0.75 0.2 0 0.94 0.126 0.058 0.799 0.673 0.699

400 0.50 0.67 0.2 0 0.96 0.135 1.084 1.161 1.026 1.015

BXN AXN AXL-E AXL-XBT CDc/F ACNv i/2CNasin 2a CNBT CN

200 0 0.010 0.61 0.72 1.22 0.561 0.803 -0.169 1.20

300 0 0.015 1.20 1.245 1.30 1.137 1.083 -0.252 1.968
1.787 3.081

400 0 0.030 2.07 1.98 1.50 3.413 1.231 - 4.644

A-2
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Cm~ 1/2 CNa xcp sinf 2a + ACmv (Eq. (10))

KF. cS 2a cot a [C] XN+ [B]XLE + H[B].X-B +
KFcsa S0 XN XL-E

4 cos2cz dL / E.(1) 1)

It XL-XBT de)(q (1) (5)

[where X =(k. - xBT)S tanal

a CXN BXN BXL-E BXL-XBT ACmv CmBT Xcp(nose) Cm(nose)

200 0 0 0.13 0.185 -2.016 +1.115 -1.587 -1.905

300 0 0 0.43 0.43 -4.032 +1.66 -1.893 -3.725

-6.722 -2.737 -8.26
400 0 0.03 1.12 1.07 12.374 -2.996 -13.912

B. Tail Fins (Fig. la)

Since M = 0.85 is beyond the range of Figure 40 for finding

CN (f)a curve Of CNa~e versus M mu'st be constructed.

Find CN 11f)at M =0.6 AR = 1.56 (Fig. 40)

CN 1.59/rad Ac =600
a(fe) 

1

(MFB)A0O 0.89 (AR =1.56, t/c =23%) (Fig. 45a)

(MFB)A =0.96 (Fig. 45b)

(CN "(fe) ) BA= 1.80/rad at (MFB)A (Fig. 40)

Correct C N f)BA=1.80 (0.88) =1.60/rad (Fig. 45c)

A- 3
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Ma (MFB)A + 0.7 1.03 (Eq. (22))

CN( - )(CN ) 1.12/rad at MaC~a~fe~a(fe) FB=A
(Eq. (23) Fig. 45d)

Mb = (MFB)A + 0.14 = 1.10 (Eq. (24) Fig. 45e)
b

CN =(1-)(CNa ) 1.35 at Mb
a(fe)b (fe) FB=A

From Figure 2a CN 1.59 at M = 0.85

a fe

Use Equation (33) to calculate CNfe up to a'

Find a' from Figure 56 for AR = 1.56 X = 0.7, a' 15°

f(2) 2.8 (Fig. 55)

r 16faf 32ff a
C a) + -CNafe 2 + -

CNfe =CNafe T2 fL7 2, .r3

4  CNafe a 4  (Eq. (33))

For a = 50 CNfe CNafe = 1.59 (5/57.3) 0.14

For a = 100 and 150

59 0.[4.53 - 2.53] 1 + [1.29 - 2.89] 0.018

Nfe0.60.8

+ [0.459 - 0.205] [.001] [0.5251, a
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a = 200

a - a' 20 - 15 0.33 (Fig. 57)
30 - a 30 - 15

ACN

= 0.31 ACNm 0.35
A CNm

ACN 0.1085

CN 0.5249 + 0.1085 0.6334Cfe
a 300

a -a' 30 - 15
30 -a 30 - 15

ACN
0.75 ACN 0.262

ACN m

C-f 0.5249 + 0.262 = 0.7869

To calculate CNf at 012:40, first calculate CNfe at a = 500 using

Equation (34) and fair the curve between the values at a = 300 and

500.

: 500

CN f(30) + 1.738A - 1.652f'(30) (Eq. (34))

+ [4.82f'(30) - 6.6A]a

+ [7.54A - 4.15f'(30)]a 2

+ [!.llf'(30) - 2.31A]a3
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f(30) 0.91 (Fig. 60a, b)

f'(30) =0.70 (Fig. 61)

CN 1. (Fig. 59)

A =C~c - f(30) 1.1 - 0.91 = 0.19 (Eq. (34))

e = 0.91 + 1.738(0.19 1 .652(0.70)= +0.084

+ [4.82(0.7) -6.6(0.19 )]0.871 10

+ [7.5(0.19) -4.15(Dl.70)30.761 =-1.12

+ [1.11(0.70) -. 2.31(0.19)10.664 = 0.22

1.03

From Figure 2a, CNfe 0.93 at a =400

C. Total CN for Body +. Fins

CN T =CNB + CNvB +CNBT + CNvBT + CNFB

where: CNFB =CNfe (086 o 0t 5 .see Fig. A-i

= CNfe (1.088) for a =160 to 900

See Table la for values Of CNFB

D. Center of Pressure of Fins

x c ( Ax cp
-c -~=0 - ) i + F(MN (Eq. (36))

c a9~ -0.58 for X 0.70 (Fig. 63)

Find cP for M =0.98 for a = 50, 100, 2005 300, 400

from Figure 603. See Table la for values.
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C 41098 C) =09 (Eq. (37))c M=.9 = ,a=90 - ) e M=0.98

See Table la for values.

At M = 0.85 F(M) = 0.20, N = 1 (Fig. 64, 65)

See Table la for values of A [1 + F(M)J
C

!2k = -0.58 - AX[p 1 + F(M)] see Table la

c c

Xe from leading edge of fin is xcp (0.87)

CD C

Xep from nose of body is -6.07 + xcp

CmFB (Xcp - 6 .07 )CNFB

E. Total Pitching Moment Referred to Nose of Body

CmT = CmTB + CmTF  see Table la for values.

A-7

\j



NOLTR 73-225

Table A-1

RESULTS OF HANDBOOK CALCULATION OF CN & Cm FOR

A TYPICAL FREE FALL SHAPE, M =0.85

BODY

a INVISCID viscousJ

CNB XCPB CN vB XcPv

50 0.218, Fig. 2 -1.25, Fig. 10--

100 0.421, Fig. 12b -2.41, Fig. 14b 0.065, Fig. 13b -2.41, Fig. l4b

15b 15b200 0.803, Eq. (8) -1.25, Fig. 10 0.539, Eq. (9) -3.653, Eq. (9)
300 1.083, Eq. (8) -1.25, Fig. 10 1.076, Eq. (9) -3.37, Eq. (9)

(11)
40 .,3$q. (8) -1.25, Fig. 10 1.78 (9) ___7 Eq. (9))

4Q 23E3.413 Eq.7 (9))

BOATTAI L

a INVISCID viscous

CBT xcPBT CNvBT x cPBT

50 -0.042, Eq. (16) -6.60, Fig. 36 -- -

100 -0.084, Eq. (16) -6.60, Fig. 36

200 -0.169, Eq. (16) -6.60, Fig. 36 0.007 -6.6 (centroid of BT)

300 -0.252 1-6.60, Fig. 36 0.061 -6.6 (centroid of BT)

400  --- 6.60, Fig. 36 0.16? -6.6 (centroid of BT)

J A- 8



NOLTR 73-225

Table A-1 (Cont.)

FINS__ _ _ _ _ _ _ _ _

a ____________ Fig. 63 1Eq. (30a) (a)

FB (-)M=0.98 (cp--)M=0. 9 8  El+F()

50 0.112 -0.300 0.28 0.34+

100 0.265 -0.37 0.21 0.25

200 0.693 -C.441 0.14+ 0.17

300 0.860 -0.4+7 0.11 0.13

400 1.016 -0.50 0.08 0.10

x c 0.58 -a x -6.075 + x Cm

c cp cp FB

50 -0.24+ -0.21 -6.28 -0.70

100 -0.33 -0.29 -6.36 -1.68

200 -0.4+1 -0.36 -6.4+3 -4.46

300 -0.4+5 -0.39 -6.4+6 -5.56

400 -0.4+8 -0.4+2 -6.4+9 -6.59
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Table A-i (Cont.)

ciCNTB CMTB XC'Pod

(from nose)

50 0.176 +0.004 +0.02

100 0.402 -0.617 -1.53

200 1.180 -1.905 -1.61

300 1.968 -3.725 -1.89

400 3.180, TURB -8.629, TURB -2.74, (turb)

400 4.806, LAM -14.109, LAM -2.99, (lam)

ciCNT M

50 0.289 -0.71

100 0.686 -2.30

200 1.873 -6.37

300 2.828 -9.28

400 4.202, TURB -14.19, (turb)

400 5.828, LAM -20.70, (lam)
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rN/d=L5 xE6d I-t°' o
t/c = 0.23

6.07,

6.91

x= 0. 61/0. 87 = 0.70

I 1 " I ---t- FIN AREA: Sfe = 2 (A1 + A2 ) = b' C (1 +,k)/2 + b C
tn 15 2 

'

c 2d = 0.30 (0.87) (1 + 0.7)/2 + 0.275 (0.87)o A I,
t I 4( =0.461

__ i A I (N. (b) 2Ce (0.85) 1
, __d AR=-- = - 74 = 1.56

0. 835 -] Fe

SW =FIN + BODY AREA =Sfe + (A3 + A4 )2

- 0.461 + 2 (0.115 + 0.188)

S = 1.067w

TO FIND WING-BODY AND BODY-WING FACTORS USE dBT/be

FIG. 42 dBTb e = 0.450/1.3 = 0.346 Kb(f) = 0.53, Kf(b) = 1.32

TO ACCOUNT FOR BOATTAIL SHADOW EFFECT ON FIN FIND Kf(sc) 0.5 (FIG.54)

C ~~ N BTb .3 b(f S ~ V()ofe L(+Kb) f(sc Sfe 1 Te

ref

C32 0 3 5 (0.239) 4N 0N

"fre f Cfe [1. 067 )0 0.461 0.461 07

0.806 CN
Cfu

ABOVE c = 100 THE SHADOW EFFECT STOPS

THEN: C = 1.088 C
N N

ref

FIG. A-I TYPICAL FREE FALL SHAPE
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